Discussion of the solutions for a system of linear equations with two variables

A. DEterminants with two rows

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \tag{1}\\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

The solutions to the unknowns x and y are given in the second formulas:

$$
\begin{equation*}
x=\frac{c_{1} \cdot b_{2}-c_{2} \cdot b_{1}}{a_{1} \cdot b_{2}-a_{2} \cdot b_{1}} \quad \text { and } \quad y=\frac{a_{1} \cdot c_{2}-a_{2} \cdot c_{1}}{a_{1} \cdot b_{2}-a_{2} \cdot b_{1}} \tag{2}
\end{equation*}
$$

For $\left(a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right) \neq 0$
for $a_{1} \cdot b_{2}-a_{2} \cdot b_{1}$ we introduce the following:

$$
\begin{aligned}
& D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \\
& \left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} \cdot b_{2}-a_{2} \cdot b_{1}
\end{aligned}
$$

Analogue to that we have:

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|=c_{1} \cdot b_{2}-c_{2} \cdot b_{1} \\
& D_{2}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|=a_{1} \cdot c_{2}-a_{2} \cdot c_{1}
\end{aligned}
$$

The number

$$
D=\left|\begin{array}{ll}
a_{1} & b_{1} \tag{3}\\
a_{2} & b_{2}
\end{array}\right|
$$

Is called a determinant of the system (1),

$$
D_{1}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right| \quad \text { i } \quad D_{2}=\left|\begin{array}{ll}
a_{1} & C_{1} \\
a_{2} & C_{2}
\end{array}\right|
$$

(4)
respectively, the determinant \mathbf{x} and determinant \mathbf{y}
The expression $a \cdot d-b \cdot c$,

$$
\left|\begin{array}{ll}
\propto & b \\
< & d
\end{array}\right|
$$

Is called a determinant of two rows.
For the solutions to the system (1), based on (2), (3) and (4), follows:

$$
x=\frac{D_{1}}{D}, \quad y=\frac{D_{2}}{D}
$$

Example 1. $\left|\begin{array}{ll}3 & 4 \\ 4 & -3\end{array}\right|=3 \cdot(-3)-4 \cdot 4=-25$,
Example 2. Solve the system of equations:

$$
\left\{\begin{array}{l}
5 x+2 y=29 \\
7 x-2 y=7
\end{array}\right.
$$

Solution:

$$
D=\left|\begin{array}{ll}
5 & 2 \\
7 & -2
\end{array}\right|=-24, \quad D_{1}=\left|\begin{array}{ll}
29 & 2 \\
7 & -2
\end{array}\right|=-72, \quad D_{2}=\left\lvert\, \begin{aligned}
& 5 \\
& 7
\end{aligned}\right.
$$

29
$7=-168$,

$$
x=\frac{D_{1}}{D}=\frac{-72}{-24}=3, \quad y=\frac{D_{2}}{D}=\frac{-168}{-24}=7
$$

Solution to the system is $(x, y)=(3,7)$
We have a determinant

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

The numbers a, b, c, d are called elements determinant,
$\begin{array}{llllll}a & b & \text { i } & c & d & \text { are called rows, while } \\ & a & & b & \\ c\end{array} \quad \begin{array}{lll}d\end{array} \ldots$ columns of the determinant.
The elements a and d comprise the leading diagonal, while c and b are a antidiagonal or counterdiagonal of the determinant

Determinants with two rows have the following properties:

1) Determinats aren't changed if the rows become columns, and the columns become rows.
2) If both rows(and both columns) change their positions the determinant doesn't change its sign.
3) The determinant is multiplied when the elements of one of the rows or columns is multiplied
4) If the elements of one row(or column) are proportional with the elements of the second row(or columns), the determinant is equal to zero
5) If the elements of one row or column are equal to zero, the determinant is equal to zero
B. Discussion of the solutions to a system of linear equations with two variables

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

Dependent on whether the determinant of the system and the determinant of the unknowns are equal or different and not equal to zero we differentiate the following scenarios:
1^{0} AIf the determiants of the system is not equal to zero, then the sytem has one and only solution

$$
x=\frac{D_{1}}{D}, \quad y=\frac{D_{2}}{D} .
$$

Where D is a determinant of the system, and D_{1} i D_{2}, are determinants of the unknowns... and for the system we say it's defined.
The requirement $\mathrm{D} \neq 0$, can be represented as:

$$
a_{1} \cdot b_{2} \neq a_{2} \cdot b_{1}
$$

or:

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

Accordingly, the system is defined, if the coefficient in front of the unknowns of one equations are proportional to the coefficients to the other equation
2^{0} If he determinant of the system D is equal to zero and at least one of the determinants D_{1} and D_{2} is equal to zero, then the system has infinite number of solutions, and for it we say that its undefined.

From the : $\mathrm{D}=0$, for example, $\mathrm{D}_{1}=0$, we have:

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \quad \text { i } \frac{c_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}
$$

or:

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

Accordingly, the system is undefined if the a_{1}, b_{1} and c_{1} from one equation are proportional to the numbers a_{2}, b_{2} i c_{2} from the second equation.
3^{0} If the determinant of the system D is equal to zero, if the determinant $D_{1 \text { and }} D_{2}$ are not zero, the system has no solutions.

From the following: $D=0, D_{1} \neq 0$ and $D_{2} \neq 0$ follows that the coefficients of one equations are proportional to the appropriate coefficients of the second equation, while the numbers C_{1} and C_{2} are not proportional to them.

Example. Examine the solution of the following system:

$$
\left\{\begin{array}{l}
a x+y=1 \\
x-y=a
\end{array}\right.
$$

Determinant of the system is:

$$
D=\left|\begin{array}{ll}
\boldsymbol{a} & 1 \\
\mathbf{1} & -1
\end{array}\right|=-1-a
$$

1^{0}. If $a=-1$, then the determinant is equal to zero.
In this case the determinants of the unknowns are:

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right|=-1+1=0 \\
& D_{2}=\left|\begin{array}{ll}
-1 & 1 \\
1 & -1
\end{array}\right|=1-1=0
\end{aligned}
$$

The system has infinite number of solutions.
2^{0}. If $a \neq 0$, then the determinant of the system is different from zero and the sytem has the solution: $(x=1, y=1-a)$.

Tasks:

1. Solve the following:
a) $\left\{\begin{array}{l}2 x+y=8 \\ x-y=4\end{array}\right.$
b) $\left\{\begin{array}{l}5 x+2 y=12 \\ x+7 y=9\end{array}\right.$
v) $\left\{\begin{array}{l}\frac{x+y}{3}+x=15 \\ y-\frac{y-x}{5}=\frac{6}{5}\end{array}\right.$
2. Examine the solutions of the following system of equations:
a) $\left\{\begin{array}{l}a x+y=2 a \\ 2 x+y=a\end{array}\right.$
b) $\left\{\begin{array}{l}3 a x+y=a \\ 2 a x+y=b\end{array}\right.$
